If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+4y-8=0
a = 3; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·3·(-8)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{7}}{2*3}=\frac{-4-4\sqrt{7}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{7}}{2*3}=\frac{-4+4\sqrt{7}}{6} $
| (5x+2)+(5x+2)=14x+3 | | (1/2)x-3/5=2/5 | | 15=4x-49 | | 8x^2+14x=12 | | 7g+3=2g+13 | | 4x-12/5x=2 | | 3x+5=63 | | x^2+8x−9=0 | | 10p=2(p-12) | | 3n+-40+2n=15 | | 3(3x+3)=19x+8 | | (4x-8)+(3x-16)=95 | | 5x+10-x=-6 | | -8x-3=-7x+11 | | 5x+10-x=6 | | (x+2)(x-3)=x2+5x+36 | | (4x-8)+(3x+6)=95 | | 12(n+3)-3n=117n= | | 39+(2x+1)=3x+13 | | 12(n+3)-3n=117.n= | | 4(w-4)-1=-3(-2w+9)-6w | | 2(×-5)+7=x+8 | | 10^2x=40 | | (39)+(3x+1)=3x+13 | | x-1+2(2x+8)=-3(x+1) | | -6(4y-4)+9y=3(y+7) | | (s−9)(s−1)=0(s−9)(s−1)=0 | | −834c−4‾‾‾‾‾‾√3=2 | | 9x-2=x+X+12 | | 26-2x=30 | | x+(2x+2)=20+(x+2) | | 14x+14+-x+18=8x+62 |